C. U. SHAH UNIVERSITY Summer Examination 2020

Subject Name : Design and Analysis of Algorithms

Subject Code : 4TE05DAA1			Branch: B.Tech (CE))	
Semest	ter: 5	Date: 02/03/2020	Time: 10:30 To 01:30	0 Marks: 7	0
 Instructions: (1) Use of Programmable calculator & any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 					
Q-1		Attempt the following questions:			(14)
c	a)	What is algorithm?			
	b)	Arrange following rate of growth in in	ncreasing order.		
		$2N, n \log n, n^2, 1, n, \log n, n!, n^3$			
	c)	Define Big 'Omega' notation.			
	d) What is space complexity of an algorithm? $L_2 2^{n+1} = O(2^n) + 2 E_{n+1} z_n^{n+1}$				
	e)	Is $2^{n+1} = O(2^n)$? Explain	G (
	I)	Give recurrence equation for Merge Sort.			
	g)	i) $O(n^2)$ ii) $O(n)$	iuitiplication is:	iv) $O(n^3)$	
	b)	Time complexity of LCS is:	III). O(III0gII)	IV). U(II)	
	ш)	i) $\Omega(m!)$ ii) $\Omega(mn)$	iii) $O(n!)$	iv) $O(n^2)$	
	i)	is a condition that is always true at a particular point in an algorithm.			
	-)	i). assertion ii). constant	iii). exception	iv). invariant	
	j)	Data Structure used for the Merge	Sort:	,	
	i). Two Pointers ii). Two pointers and N Extra		N Extra Arrays		
	iii).2N/2 pointers and N/2 Extra Arrays iv).Two Pointers and an Extra Arrays			an Extra Array	
	k)	In dynamic programming, the output to stage n become the input to:			
		i). stage n-1 ii). stage n+1	iii). stage n itself	iv). stage n-2	
	l) What do you mean by time complexity of an algorithm?m) What is a difference between an algorithm and a program?				
• • •	n)	List out characteristics of an algorithm.			
Attempt any four questions from Q-2 to Q-8					
Q-2		Attempt all questions			(14)

- (a) Write an algorithm for insertion sort. Also analyze the algorithm and compute its best case and worst case time complexity.
- (b) Explain master theorem and solve the following recurrence equation with master method:
 - 1. T(n) = 9T(n/3) + n

2. T(n) = 3T(n/4) + nlgn

Q-3 Attempt all questions

- (a) Write down an algorithm of quick sort. Analyze it for best case, worst case and average case. When it performs similar to selection sort?
- (b) What is an amortized analysis? Explain aggregate method of amortized analysis with suitable example.

Q-4 Attempt all questions

- (a) Differentiate among Greedy approach, Divide and Conquer Strategy, Dynamic Programming, Branch and Bound, and backtracking for designing of an algorithm.
- (b) Explain Floyd-Warshall's algorithm for finding out all pair shortest path in a given graph with suitable example.

Q-5 Attempt all questions

- (a) Find out optimal sequence for matrix chain multiplication using Dynamic Programming for matrices A1 [5 \times 4], A2 [4 \times 6], A3 [6 \times 2], and A4 [2 \times 7]. Also give the optimal parenthesization of matrices.
- (b) Explain Fractional Knapsack problem with suitable example.

Q-6 Attempt all questions

(a) Solve the following 0/1 Knapsack Problem. There are five items whose weights and values are given in following arrays:

Weight W[] = $\{ 1, 2, 5, 6, 7 \}$

Value V[] = { 1,6,18, 22, 28 }

Give equations and find out the optimal knapsack items where weight capacity of knapsack is **11** units.

(b) Explain Backtracking Method. What is N-Queens Problem? Give solution of 4-Queens Problem using Backtracking Method.

Q-7 Attempt all questions

- (a) What is Minimum Spanning Tree? Explain Krushkal's algorithm for minimum spanning tree with suitable example.
- (b) Explain Making-Change problem using dynamic programming with suitable example.

Q-8 Attempt all questions

- (a) Explain spurious hits in Rabin-Karp string matching algorithm with example. Working modulo q=13, how many spurious hits does the Rabin-Karp matcher encounter in the text T = 2359023141526739921 when looking for the pattern P = 31415?
- (b) Define P, NP, NP-complete and NP-Hard problems. Give examples of each.

(14)

(14)

(14)

(14)

(14)